Sign Cauchy Projections and Chi-Square Kernel

نویسندگان

  • Ping Li
  • Gennady Samorodnitsky
  • John E. Hopcroft
چکیده

The method of stable random projections is useful for efficiently approximating the lα distance (0 < α ≤ 2) in high dimension and it is naturally suitable for data streams. In this paper, we propose to use only the signs of the projected data and we analyze the probability of collision (i.e., when the two signs differ). Interestingly, when α = 1 (i.e., Cauchy random projections), we show that the probability of collision can be accurately approximated as functions of the chi-square (χ) similarity. In text and vision applications, the χ similarity is a popular measure when the features are generated from histograms (which are a typical example of data streams). Experiments confirm that the proposed method is promising for large-scale learning applications. The full paper is available at arXiv:1308.1009. There are many future research problems. For example, when α → 0, the collision probability is a function of the resemblance (of the binary-quantized data). This provides an effective mechanism for resemblance estimation in data streams.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign Stable Projections, Sign Cauchy Projections and Chi-Square Kernels

The method of stable random projections is popular for efficiently computing the lα distances in high dimension (where 0 < α ≤ 2), using small space. Because it adopts nonadaptive linear projections, this method is naturally suitable when the data are collected in a dynamic streaming fashion (i.e., turnstile data streams). In this paper, we propose to use only the signs of the projected data an...

متن کامل

An effective method for approximating the solution of singular integral equations with Cauchy kernel type

In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...

متن کامل

Z,-boundedness of the Cauchy Transform on Smooth Non-lipschitz Curves

If A is a Lipschitz function, i.e., || A |L < °°, then %A makes a very significant example of non-convolution type singular integral operators. The problem of L -boundedness of the Cauchy transform was raised and solved when || A |L is small by A. P. Calderόn in relation to the Dirichlet problem on Lipschitz domains [Call, Cal2]. Since then, it has been a central problem in the theory of singul...

متن کامل

On the Cauchy Problem for Hartree Equation in the Wiener Algebra

We consider the mass-subcritical Hartree equation with a homogeneous kernel, in the space of square integrable functions whose Fourier transform is integrable. We prove a global well-posedness result in this space. On the other hand, we show that the Cauchy problem is not even locally wellposed if we simply work in the space of functions whose Fourier transform is integrable. Similar results ar...

متن کامل

Sign Stable Random Projections for Large-Scale Learning

In this paper, we study the use of “sign α-stable random projections” (where 0 < α ≤ 2) for building basic data processing tools in the context of large-scale machine learning applications (e.g., classification, regression, clustering, and near-neighbor search). After the processing by sign stable random projections, the inner products of the processed data approximate various types of nonlinea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013